Cross-Domain Agents
Design agents that transfer knowledge across different domains
Your Progress
0 / 5 completedBuilding Cross-Domain Systems
A production cross-domain agent system needs four components: transfer engine (handles knowledge transfer), domain adapters (efficient per-domain layers), evaluator (measures effectiveness), and multi-domain pipeline (orchestrates deployment). Here's production-ready code.
Interactive: Implementation Explorer
Explore each system component:
class DomainTransferEngine:
"""Transfer learning engine for cross-domain agents"""
def __init__(self, source_model: Model, source_domain: str):
self.source_model = source_model
self.source_domain = source_domain
self.adaptation_history = []
def transfer_to_domain(
self,
target_domain: str,
target_data: Dataset,
strategy: str = 'parameter'
) -> AdaptedModel:
"""Transfer source model to new domain"""
# 1. Analyze domain gap
gap_analysis = self._analyze_domain_gap(
self.source_domain,
target_domain,
target_data
)
print(f"Domain gap: {gap_analysis.similarity}%")
# 2. Select transfer strategy based on gap
if strategy == 'auto':
strategy = self._select_strategy(gap_analysis)
# 3. Execute transfer
if strategy == 'feature':
adapted_model = self._feature_transfer(target_data)
elif strategy == 'parameter':
adapted_model = self._parameter_transfer(target_data)
elif strategy == 'architecture':
adapted_model = self._architecture_transfer(target_data)
else:
adapted_model = self._knowledge_distillation(target_data)
# 4. Record transfer
self.adaptation_history.append({
'source': self.source_domain,
'target': target_domain,
'strategy': strategy,
'gap': gap_analysis.similarity,
'accuracy': adapted_model.evaluate(target_data.test)
})
return adapted_model
def _analyze_domain_gap(
self,
source: str,
target: str,
data: Dataset
) -> DomainGap:
"""Measure similarity between domains"""
# Extract features from both domains
source_features = self.source_model.encode(data.source_samples)
target_features = self.source_model.encode(data.target_samples)
# Calculate distribution distance
mmd_distance = maximum_mean_discrepancy(
source_features,
target_features
)
# Convert to similarity percentage
similarity = max(0, 100 - (mmd_distance * 100))
return DomainGap(
similarity=similarity,
distance=mmd_distance,
recommendation=self._get_recommendation(similarity)
)
def _parameter_transfer(self, target_data: Dataset) -> Model:
"""Fine-tune all parameters on target domain"""
# Clone source model
model = self.source_model.clone()
# Use low learning rate to preserve knowledge
optimizer = Adam(
model.parameters(),
lr=1e-5 # 10x lower than original training
)
# Fine-tune
for epoch in range(10):
for batch in target_data.train:
loss = model.compute_loss(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()
return modelComplete Usage Example
# Initialize with base model trained on large corpus
base_model = load_pretrained_model("gpt-4-base")
pipeline = MultiDomainPipeline(base_model)
# Deploy to medical domain
medical_result = pipeline.deploy_to_domain(
domain_name="medical_diagnosis",
training_data=load_medical_data(),
validation_data=load_medical_validation(),
min_accuracy=0.85
)
# Deploy to legal domain
legal_result = pipeline.deploy_to_domain(
domain_name="legal_analysis",
training_data=load_legal_data(),
validation_data=load_legal_validation(),
min_accuracy=0.80
)
# Deploy to manufacturing domain
manufacturing_result = pipeline.deploy_to_domain(
domain_name="quality_control",
training_data=load_manufacturing_data(),
validation_data=load_manufacturing_validation(),
min_accuracy=0.90
)
print(f"Medical: {medical_result.accuracy:.2%}")
print(f"Legal: {legal_result.accuracy:.2%}")
print(f"Manufacturing: {manufacturing_result.accuracy:.2%}")
# Route requests to appropriate domain agents
request = Request(
text="Patient presents with chest pain...",
metadata={"source": "ehr_system"}
)
response = pipeline.route_request(request)
print(f"Domain: {response.domain}")
print(f"Confidence: {response.confidence:.2%}")
# Monitor all domains
stats = pipeline.monitor_performance()
for domain, metrics in stats.items():
print(f"{domain}: {metrics['accuracy']:.2%} accuracy, {metrics['avg_latency']:.0f}ms latency")Phase 1 (Week 1-2): Deploy base model, measure baseline performance across target domains.
Phase 2 (Week 3-4): Transfer to highest-priority domain, validate with human review.
Phase 3 (Month 2): Scale to 3-5 domains using adapters, monitor for catastrophic forgetting.
Phase 4 (Month 3+): Continuous learning - retrain base model monthly incorporating all domain data.
Success metrics: 80%+ accuracy across all domains, <100ms latency, <1% catastrophic forgetting on source domains.